Non-linear constraints with application to self-potential source inversion
نویسندگان
چکیده
We investigate the use of non-linear constraints for geophysical inverse problems, with specific examples applied to source inversion of self-potential data. Typical regularization methods often produce smooth solutions by introducing a quadratic term in the objective function that minimizes the L2 norm of a low-order differential operator applied to the model. In some cases, however, the properties of interest may not vary smoothly. Two alternative constraints are examined that provide inversion stability while allowing for solutions with non-smooth properties. One method, often referred to as ‘compactness’ or ‘minimum support’, seeks to minimize the area (in 2D) or volume (in 3D) occupied by non-zero model parameters. The second method, ‘total variation’, minimizes an approximation of the L1 norm of the gradient of the model. Both approaches involve a non-linear regularization functional, and must therefore be solved iteratively. We discuss the practical aspects of implementing these regularization methods and compare several examples using self-potential source inversion on a synthetic model. We also apply the compactness constraint for self-potential source inversion using a field data example.
منابع مشابه
Non-linear stochastic inversion of regional Bouguer anomalies by means of Particle Swarm Optimization: Application to the Zagros Mountains
Estimating the lateral depth variations of the Earth’s crust from gravity data is a non-linear ill-posed problem. The ill-posedness of the problem is due to the presence of noise in the data, and also the non-uniqueness of the problem. Particle Swarm Optimization (PSO) is a stochastic population-based optimizer, originally inspired by the social behavior of fish schools and bird flocks. PSO is ...
متن کاملModeling and Inversion of Self-Potential Data
This dissertation presents data processing techniques relevant to the acquisition, modeling, and inversion of self-potential data. The primary goal is to facilitate the interpretation of self-potentials in terms of the underlying mechanisms that generate the measured signal. The central component of this work describes a methodology for inverting self-potential data to recover the three-dimensi...
متن کامل3D gravity data-space inversion with sparseness and bound constraints
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...
متن کاملNon-linear stochastic inversion of 2D gravity data using evolution strategy (ES)
In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...
متن کاملA method for 2-dimensional inversion of gravity data
Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006